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Abstract— We present a distributed algorithm enabling
the dynamic tracking of diameter and radius (DR) of time-
varying open networks (ON) together with nodes’ eccen-
tricities and network size (ES), called DR-ON-ES, which
does not require the disclosure of nodes’ identity nor any
a priori information on the network. The convergence prop-
erties of DR-ON-ES are discussed within the framework of
open multi-agent systems (OMASs): sufficient conditions
are provided to ensure that the TPI of an OMAS executing
DR-ON-ES is globally asymptotically open stable, meaning
that all trajectories converge to within a neighborhood
of the sought parameters. The parameters’ estimations at
equilibrium points are characterized in terms of mean ex-
pected value and mean squared error. As an ancillary result,
we remark that DR-ON-ES exploits the OSTDMC Protocol
– a novel distributed protocol formalized and analyzed in
this manuscript – to achieve consensus on the time-varying
maximum value of a set of signals fed locally to the agents
of the network.

Index Terms— Open Networks, Distributed Estimation,
Dynamic Consensus, Dynamic Tracking, Graph.

I. INTRODUCTION

The behavior of a large group of entities, such as robot
teams, networks of computing units, sensor networks, smart
grids, etc., can be captured by using the multi-agent sys-
tem (MAS) paradigm. The interactions among the agents,
influenced by sensing, communication, or physical coupling,
are represented by a graph reflecting the network structure,
where the nodes represent the agents and edges connecting the
nodes represent these interactions. While most of the existing
literature is limited to fixed-size networks, thus assuming that
no agent may join or leave the network as time goes by,
this article delves into the realm of open multi-agent systems
(OMASs), where the number of agents within the network
is time-varying. This characteristic is prevalent in all real
engineering applications like the Internet of Things, vehicle
platooning in multi-robot systems [1], [2], energy management
in smart power grids [3], [4], online optimization in machine
learning [5]–[8], consensus in cooperative networks [9], [10],
and so on.
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The main contribution of this manuscript is to provide
a distributed solution for tracking key graph parameters –
specifically, the diameter, the radius, the nodes’ eccentricity
and their number – in open and anonymous networks, where
the agents are free to join and leave as time goes by and
the topology continuously evolves. The proposed algorithm is
designed to handle such variability, making it well-suited for
practical applications in mobile ad-hoc networks [11] where
pairing the initial number of nodes (that might be known at the
time of deployment) and consequent estimates can be used to
detect potential disconnections; in multi-robot networks [12]
where estimations on graphs’ parameters may be instrumental
for coordination and collision avoidance; sensor networks [13]
where the knowledge of nodes and number of edges can be
used as proxy metric for power consumption; in Internet of
Things (IoT) applications [14] where the knowledge of the
number of devices may be used to adjust the communication
protocols so that everything runs smoothly. Moreover, the pro-
posed algorithm offers the advantage of preserving the nodes’
anonymity by non-disclosing of their identities. In dynamic
networked control scenarios, explicitly assigning and revealing
unique node identifiers can lead to several issues, including
impractical operational constraints, ncreased vulnerability to
targeted attacks, and privacy concerns. For instance, in smart
grids, sensor data is often aggregated anonymously to prevent
consumer profiling [15], while in vehicular networks, anony-
mous communication protocols can mitigate risks associated
with tracking and spoofing [16].

A. Literature review and main contributions

1) Distributed estimation of graph parameters: Within our
control community, various methods have been proposed in
the literature for the distributed estimation of graph parameters
in networks with a fixed number of agents. A brief collection
of works that exemplify various employed strategies – such as
consensus, leader election, statistical inference, random walks,
random sampling – and enclosing the researchers most devoted
to the topic, is given by [17]–[23] and reference therein. The
main drawbacks of the algorithms proposed in these works
are: the dependence on precise initial conditions to correctly
estimate the parameter of interest, common to all but [21]
that, instead, requires the centralized selection of one (or
more) leader; the assumption of the existence of a unique
identifier for each node which is known to all other nodes in
the network [18], [20]; the partial knowledge of the network,
such as bounds on the number of nodes [17], [20] or the
diameter [17], [22].
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The novelty of our research to this literature is the
presentation of a fully distributed algorithm for the estimation
and dynamic tracking of networks’ Diameter and Radius (DR)
of time-varying Open Networks (ON) with nodes’ Eccentric-
ities and Network Size (ES). The proposed algorithm, called
DR-ON-ES, does not have any of the above-mentioned weak
points, being resilient against re-initialization, avoiding the
disclosure of nodes’ identity, keeping the privacy of the local
reference signal, and not requiring any a priori information
of the network. We prove stability of an OMAS executing
DR-ON-ES, showing its finite-time convergence and char-
acterizing the estimations in terms of mean expected value
and mean squared error. Recently, the open scenario was
numerically tested in [24] – where the authors propose an
exact algorithm to count the number of nodes and edges in
the specific scenario of leader-follower networks – and in [25]
– where the authors recast the size estimation problem into a
distributed optimization problem. However. these algorithms
lack of a theoretical characterization for open networks.

2) Open Multi-Agent Systems (OMASs): The concept of
open systems has only recently gained attention in our control
community for specific applications such as resource alloca-
tion [26], mode computation [27], optimization [28], [29],
and learning [30]. This is mostly due to various conceptual
difficulties in adapting control-theoretic notions such as state
and stability when the size of the systems changes over
time. Indeed, simple concepts like the distance between two
states become unfeasible when the two states have different
dimensions. Different strategies and perspectives have been
considered to overcome these issues, such as embedding
the time-varying set of agents in a time-invariant superset
while considering constant the state of the agents that are
not currently active [31]; exploiting gossip-based interac-
tions [32]–[34] or leveraging time-scale separation principle
between the rate at which agents join/leave the network and the
rate of the protocol steps execution [9], [35] while achieving
consensus on specific metrics, such as the average, the median,
and the maximum, where the influence of additive nose has
been analyzed in [36]; formulating graphon models in infinite
dimensional spaces to represent arbitrary-size networks of
linear dynamical systems [37]–[39].

The novelty of our research to this literature, is that of
formulating general stability criteria for the class of slowly
expansive and paracontractive OMASs as defined in our
preliminary work [40]. We follow the general framework
presented in [41], where proper definitions of state evolu-
tion, equilibria, and stability are established for discrete-time
OMASs, together with stability criteria for the special class
of contractive OMASs. Differently from [41], the difficulty
in evaluating the distance between vectors in different spaces
S1 ̸= S2 is overcome by using the infinity norm instead of the
Euclidean norm [42]–[46] (avoiding the need of normalizing
the distances by the number of components) and by consider-
ing only the components in the intersection of the two spaces
S1 ∩ S2 (getting rid of the definition of open distance).

3) The dynamic consensus problem: In a consensus prob-
lem, the agents agree upon a state value by making only use
of local information coming from neighboring agents. In its

simplest formulation, the agents are required to converge to
a state value which is a function of the initial state of the
network. On the contrary, in the dynamic consensus problem,
the agents are assumed to be non-autonomous and are required
to converge to a state value which is a function of the time-
varying reference signals given as input to the agents, most
commonly the average [47], the median value [48], [49], and
the maximum value [9], [50]; in [6] a unified approach has
been recently proposed to solve all these consensus problems.
While generalizations to the open scenarios have been carried
out both for the average [41], [51]–[53] (see also [10] for an in-
depth analysis of performance limitations) and the median [35]
(even if only for the continuous-time case), this is not the case
for the maximum value. Indeed, the open scenario has been
addressed only for the standard (non dynamic) max consensus
problem in [32] by gossip-based analysis.

The novelty of our research to this literature, is that
of providing the Open Self-Tuning Dynamic Max-Consensus
(OSTDMC) Protocol to estimate and track in a distributed way
the maximum value of a set of reference signals fed to the
agents, who don’t need to disclose their identity or the signal
they have access to (thus working in anonymous networks),
and do not need to know anything about the network (such
as upper bounds on its size or the diameter) or the reference
signal (such as an upper bound on their derivative). The OST-
DMC Protocol derives from a non-trivial extension to the open
scenario of the STDMC Protocol previously formulated by us
in [9], [23], whose applicability is limited by the assumption
of the agents’ knowledge of the inputs derivatives, not required
by the newly proposed protocol. We prove stability of an
OMASs executing the OSTDMC Protocol, showing its finite-
time convergence and determining its stability radius, which
bounds the tracking error.

B. Structure of the manuscript
Section II provides the notation and recalls the relevant

concepts of graph theory applied to open networks of agents
in Section II-A, the generalized definitions of state evolution,
equilibria, and stability for open networks in Section II-
B, and the stability criteria for the class of paracontractive
and slowly expansive systems in Section II-C. Section III
presents and characterizes a novel protocol called OSTDMC
to solve the dynamic max-consensus problem in Open Multi-
Agent systems, instrumental to the main results of this paper.
Section IV presents and characterizes DR-ON-ES, an online
and distributed algorithm to estimate the nodes’ eccentricities
and the network’s size, diameter, and radius in open networks,
which exploits the OSTDMC protocol. Numerical simulations
are provided in Section V and concluding remarks in Sec-
tion VI.

II. BACKGROUND ON OPEN MULTI-AGENT SYSTEMS

An open multi-agent system (OMAS) is a multi-agent
system where agents can join and leave the network at any
time during algorithm execution, thus it has a time-varying
number of agents. We now provide some background on graph
theory for OMASs.
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A. Open networks and graphs

The pattern of interactions among the agents in an OMAS
is modeled by a time-varying undirected graph Gk = (Vk, Ek),
where Vk ⊂ N is a time-varying set of nodes modeling
the agents, and Ek ⊆ Vk × Vk is a time-varying set of
edges modeling the point-to-point communication channels
between them. The number of agents nk = |Vk| ∈ (0,∞)
is assumed strictly positive without any upper bound. Two
agents i and j are said to be neighbors at time k if there
is share a communication channel, i.e., if there is an edge
(i, j) ∈ Ek. Communications among the agents are assumed to
be bidirectional, which implies that the graph Gk = (Vk, Ek)
is undirected at any time k, i.e., for all (i, j) ∈ Ek then also
(j, i) ∈ Ek. The set of all undirected graphs is denoted by G.
A path between two nodes i and j in a graph is a sequence
of consecutive and distinct edges (i, p), (p, q), . . . , (r, s), (s, j)
where each successive edge belongs to Ek and shares a distinct
node with its predecessor. Among all paths between two
nodes i and j, the one with the lowest number of edges is
said to be the shortest path and it is denoted by πi,j

k . An
undirected graph Gk is said to be connected if there exists a
path between any pair of nodes. The distance between two
nodes i, j ∈ Vk at time k is denoted by disti,jk and it is
defined as the length (number of edges) of the shortest path
πi,j
k , namely disti,jk =

∣∣∣πi,j
k

∣∣∣. The eccentricity εik of node
i ∈ Vk at time k is defined as its maximal distance to any
other node, εik = maxj∈Vk

disti,jk . The diameter δk of graph
Gk at time k is defined as the maximal eccentricity among the
nodes, δk = maxi∈Vk

εik. The radius ρk of graph Gk at time
k is defined as the minimal eccentricity among the nodes,
ρk = mini∈Vk

εik. The set of neighbors of the i-th agent at
time k is denoted by Ni,k = {j ∈ Vk : (i, j) ∈ Ek}, whose
cardinality gives the number of neighbors, i.e., the degree of
agent i at time k, denoted by ηi,k = |Ni,k|. Note that graphs
are assumed to be with self-loops, i.e., i ∈ Ni,k. Similarly, the
set of h-hops neighbors at time k is denoted by N h

i,k and it
comprises the set of agents j which share a path πi,j between
i and j and distij ≡ h. Also, N h

k = {i ∈ V : εi(k) = h}
denotes the set of all nodes with eccentricity h at time k.

Due to the time-varying nature of the set-up, we identify in
the set of agents Vk at each time k the following subsets:

• Remaining agents Rk = Vk∩Vk−1: agents present in the
network at time k − 1 and time k;

• Arriving agents Ak = Vk \ Vk−1: agents present in the
network at time k but not at time k − 1;

• Departing agents Dk = Vk \ Vk+1: agents present in the
network at time k but not at time k + 1.

The set of departing agents may contain both remaining and
arriving agents (Dk ⊂ Rk ∪ Ak), who are instead disjoint
(Rk ∩ Ak = ∅). At time k, each agent i ∈ Vk is associated
with a vector state xi

k ∈ Rm and a vector input ui
k ∈ Rp; the

vectors defined stacking these variables are denoted by xk and
uk, respectively. Since the number of agents in the network is
time-varying, the sequences {xk : k ∈ N} and {uk : k ∈ N}
contain vectors xk ∈ Rm·nk , uk ∈ Rp·nk whose dimension
changes with k, and thus are called open sequences.

The state of a remaining agent i ∈ Rk is updated according
to a causal evolution law f i : Rm·nk × Rp × G → Rm,
while the state of an arriving agent in i ∈ Ak need to be
initialized according to some rule hi : Rp → Rm and the state
of departing agents in Dk are left out from xk+1, yielding:

xi
k =

{
f i(xk−1, u

i
k,Gk−1) if i ∈ Rk,

hi(ui
k) if i ∈ Ak,

k ∈ N \ {0}, (1)

where x0 and G0 are the initial state and configuration of the
network. Let us define the self-map gk : Rm·nk → Rm·nk as
follows

gk(x) := f(x, uk,Gk−1), (2)

where f = [f1; · · · ; fnk ]. The map gk describes the state
transition of the OMAS in the case the set of agents does not
change, i.e., xk = gk(xk−1) when Vk = Vk−1.

B. Trajectory of points of interest: existence and stability

We now introduce the concept of the trajectory of points of
interest [41, Definition 3.1].

Definition 1 (Trajectory of points of interest). Consider
an OMAS and assume that for each k ∈ N the equation

x = gk+1(x).

has a unique solution x̂k ∈ Rm·nk , which is called “point of
interest". Then, the open sequence {x̂k : k ∈ N} is called the
“trajectory of points of interest" (TPI) of the OMAS.

The existence of a TPI is guaranteed for some classes of
OMASs: this manuscript considers the class of paracontractive
OMASs, whose trajectories exhibit a contracting distance
from the TPI as time progresses. Paracontractive OMASs are
a superclass of contractive OMASs, where the contraction
specifically refers to the distance between any two trajectories.

Definition 2 (Paracontractivity). Let Γ ≥ 0 and T ≥ 1.
An OMAS is said to be “(Γ, T )-paracontractive" w.r.t. ||·||∞
if, for each k ≥ 0 at which holds Vk = · · · = Vk+T−1, there
exists γ ∈ [0, 1) such that for all x ∈ Rm·nk it holds

||(gk+T ◦· · ·◦gk+1)(x)− x̂k||∞≤max{γ||x− x̂k||∞,Γ}, (3)

where ◦ denotes the composition operator (f ◦h)(·)=f(h(·))
and {x̂k :k∈N} is the TPI of the OMAS.

Remark 1. The composition in eq. (3) is well defined under
the assumption that the set of agents remain unchanged from
k to k+T −1. Moreover, both x̂k and (gk+T ◦ · · · ◦ gk+1)(x)
belong to Rm·nk , and thus they have the same dimension,
which allows to use the infinity norm to evaluate their distance.

Since our definition of paracontractivity allows the system
to be expansive at each time step, while being paracontractive
over a longer time window of length T , there is the need of
having a bound on the rate of expansiveness. Thus, we also
introduce the definition of slow expansiveness.

Definition 3 (Slow expansiveness). Let Λ ≥ 0. An OMAS
evolving in is said to be “Λ-slowly expansive" w.r.t. ||·||∞ if
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for all k ≥ 0 and for all x ∈ Rm·nk it holds

||gk+1(x)− x̂k||∞ ≤ ||x− x̂k||∞ + Λ, (4)

where {x̂k : k ∈ N} is the TPI of the OMAS.

While for autonomous (time-invariant and with no inputs)
and size-invariant systems the stability is a property of an equi-
librium point, in our scenario of time-varying and size-varying
systems the stability becomes a property of the trajectory of
points of interest, which we call open stability.

Definition 4 (Open stability). Consider an OMAS with
state evolution {xk : k ∈ N}. Its TPI {x̂k : k ∈ N} is said to
be “open stable" w.r.t. ||·||∞ if there is a stability radius R ≥ 0
with the following property: for every ε > R, there exists δ > 0
such that:

||x0 − x̂0||∞ < δ ⇒ ||xk − x̂k||∞ < ε, ∀k ≥ 0.

Open stability means that the distance between the state
trajectory and the TPI remains bounded if the initial condition
is chosen sufficiently close to the TPI. This bound, however,
differently from standard Lyapunov stability, cannot be smaller
than a minimum value R, which we call the stability radius.
When R = 0, the distance between the TPI and the state
trajectory can be guaranteed to remain arbitrarily small, thus
implying that trajectories starting on the TPI will remain on
the TPI. In open multi-agent systems, however, persistent
perturbations from agents joining and leaving typically imply
R > 0, which represents the minimal guaranteed bound on
the trajectory’s distance from the TPI. We now also introduce
the concept of global asymptotic open stability.

Definition 5 (Global asymptotic open stability).
Consider an OMAS whose TPI {x̂k : k ∈ N} is open
stable with stability radius R ≥ 0. The TPI is said to
be “globally asymptotically open stable" w.r.t. ||·||∞ if all
trajectories converge to within a distance of R from the TPI:

lim sup
k→∞

||xk − x̂k||∞ ≤ R.

It is important to remark that the use of the infinity norm
||·||∞ obviates the necessity for distance normalization by the
number of agents. In contrast, when utilizing any other norm
||·||p with a finite p ≥ 1, normalization becomes imperative for
ensuring a fair comparison of distances evaluated in spaces of
different dimensions, as highlighted in [41, Definition 3.3] for
the Euclidean norm ||·||2. Indeed, when the ||·||∞ is employed,
the stability radius remains bounded even if the number of
agents increases over time, provided that the distance between
each new agent and its corresponding component in the TPI
remains bounded. We provide next an illustrative example.

Example 1. Consider the open sequence
xk = [1⊤

k ,−1⊤
k ]

⊤ ∈ R2k generated by an OMAS – where
1k ∈ Rk denotes the vector of ones with k elements – and
assume that the TPI {x̂k : k ∈ N} is such that the vector of
zeros x̂k = 02k ∈ R2k. Employing the standard Euclidean
norm yields

||xk − x̂k||2 = ||xk − 02k||2 = ||xk||2 =
√
2k,

which, as k → ∞, diverges even though the new components
have bounded distance of 1 from the corresponding component
of the TPI. This issue is naturally solved by the use of the
infinity norm, which does not require normalization, indeed:

||xk − x̂k||∞ = ||xk − 02k||∞ = ||xk||∞ = 1.

C. Stability conditions for paracontractive OMASs

In order to provide sufficient conditions ensuring the stabil-
ity of an OMAS, in the sense of Definition 4, it is necessary
to put limits on the variation of the TPI and on the process
by which the agents join and leave the OMAS during time.
These limits are defined next.

Definition 6 (Bounded TPI). The TPI {x̂k : k ∈ N} of an
OMAS is said to have “bounded variation" if

∃B ≥ 0 : max
r∈Rk

∣∣∣∣x̂r
k − x̂r

k−1

∣∣∣∣
∞ ≤ B, ∀k ∈ N.

Definition 7 (Bounded arrival process). The arrival pro-
cess of an OMAS with TPI {x̂k : k ∈ N} is said to be
“bounded" if

∃H ≥ 0 : max
a∈Ak

||xa
k − x̂a

k||∞ ≤ H, ∀k ∈ N.

Definition 8 (OMAS dwell time). The OMAS has dwell
time Υ ∈ N if changes in the number of agents are separated
by at least Υ instants of time, i.e.,

∃Υ ≥ 0 : Vk−1 ̸= Vk ⇒ Vk = · · · = Vk+Υ, ∀k ∈ N.

We conclude this section by providing a novel stability
result for paracontractive OMAS whose proof can be found
in our preliminary work [40, Theorem 1].

Theorem 1. Given an OMAS, if:
a) it is (Γ, T )-paracontractive with γ ∈ (0, 1) (Def. 2);
b) it is Λ-slowly expansive (Def. 3);
c) it admits a TPI with bounded variation B ≥ 0 (Def. 6);
d) its arrival process is bounded by H ≥ 0 (Def. 7);
e) it has a dwell time Υ ≥ T − 1 (Def. 8).

then the TPI is globally asymptotically open stable (Def. 5)
with radius

R = ϱ+min{T − 1, 1}(Λ +B),

ϱ = max

{
(T − 1)Λ + (2T − 1)B

1− γ
,Γ + TB,H

}
.

(5)

Remark 2. If Γ = 0 and T = 1, then the system is para-
contractive w.r.t. ||·||∞, i.e., ||g(xk)− x̂k||∞ ≤ γ||x− x̂k||∞.
In this case, the TPI of the OMAS is open stable with stability
radius R = max{B/(1− γ), H}, which is the counterpart
of [41, Theorem 3.8] for the infinity norm.

III. DYNAMIC MAX-CONSENSUS
IN OPEN MULTI-AGENT SYSTEMS

This section presents a novel protocol called open self-
tuning dynamic max-consensus (OSTDMC), the key protocol
used within the proposed distributed algorithm for estimating
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and tracking the graph parameters of open networks of agents,
called DR-ON-ES and it is presented in the next Section IV.

Let sik ∈ R be a scalar time-varying reference signal
to which the i-th agent has access to. The dynamic max-
consensus problem consists in the design of proper local
update rules for estimating and tracking the maximum s̄k ∈ R
among the time-varying reference signals,

s̄k = max
i∈Vk

sik.

The OSTDMC Protocol we propose requires that the agents
self-tune and exchange three variables: ξik ∈ R is the main
tracking variable converging nearby the objective s̄k; αi

k ∈ R
determines the decreasing rate of the estimation variable
ξik ∈ R; µi

k ∈ R keeps track of the maximum variation of the
local reference signals sik. Thus, each agent’s state xi

k ∈ R3

consists of these three variables, namely,

xi
k = [xi,1

k , xi,2
k , xi,3

k ]⊤ := [ξik, µ
i
k, α

i
k]

⊤ ∈ R3, ∀i ∈ V.
The OSTDMC Protocol is ruled by the following local up-
dates, which makes use of two parameters θ ≥ β > 0,

ξik =





max
j∈N i

k−1

{
ξjk−1 − avg

ℓ∈N i
k−1

αℓ
k−1, s

i
k

}
if i ∈ Rk,

sik if i ∈ Ak,

µi
k =





max
j∈N i

k−1

{µj
k−1, θ + (sik − sik−1)} if i ∈ Rk,

β if i ∈ Ak,

αi
k =





αi
k−1 if i ∈ Rk ∧ ξik > ξik−1,

µi
k if i ∈ Rk ∧ ξik < ξik−1,

β otherwise.

(6)

As the graph topology Gk = (Vk, Ek) changes dynamically,
each agent i ∈ Vk in the network at time k updates its state
based on the information received by its neighbors j ∈ Ni,k−1,
which may be different from the set of neighbors Ni,k at
the next step, thus requiring dynamic communications and
memory allocation. In the reminder of the manuscript, we refer
to the local interaction rule in eq. (6) of the OSTDMC Protocol
with the following notation

xi
k = OSTDMCθ,β(s

i
k, x

j
k−1 : j ∈ Ni,k−1).

We present the following result about the existence of the TPI
of an OMAS executing the OSTDMC Protocol, along with its
characterization and open stability. The proof is provided in
the appendix for the sake of readability.

Theorem 2. Consider an OMAS executing the
OSTDMC Protocol under the following conditions:

a) The graph Gk is undirected and connected for all k ∈ N;
b) The diameter δk is bounded by a constant δ̄ for all k ∈ N;
c) The OMAS has a dwell time Υ ≥ δ̄;
d) The absolute variation of the reference signals is bounded

by a constant Π ≥ 0, i.e.,
∀i ∈ Rk : |sik − sik−1| ≤ Π, ∀k ≥ 0. (7)

e) The reference signals lie within a set of size Ξ ≥ 0, i.e.,

max
i∈Vk

∣∣s̄k − sik
∣∣ ≤ Ξ, ∀k ≥ 0. (8)

If θ ≥ β > 0, then the OMAS admits a TPI such that ξ̂ik ∈
[s̄k+1−δ̄β, s̄k+1], which is globally asymptotically open stable
with radius as in eq. (5) where

T = δ̄ + 1, Γ = (δ̄ + 1)(θ +Π),

B = Π, Λ = θ +Π+ δ̄β,

H = Ξ, γ = max{0, x̄1
0−s̄1−β−(Υ−δ̄)(θ+Π)

||x1
0−x̂1

0||∞
}.

(9)

Proof: See the Appendix.
Theorem 2 shows that the parameter θ governs a trade-

off between convergence time and tracking error in the OST-
DMC Protocol. Specifically, convergence time decreases as
θ increases, since the contraction rate γ is proportional to θ.
Conversely, the tracking error increases with θ, as the stability
radius – related to Γ – also grows with θ. In contrast, θ
does not affect the steady-state error of the OSTMC Protocol,
defined as the distance between the TPI and the maximum
reference signal. This error is instead bounded by δ̄β and is
therefore primarily influenced by the parameter β. A practical
design guideline is to select a very small value for β ≈ 0
to minimize the steady-state error, and then tune θ ≫ β to
balance convergence speed and tracking accuracy effectively.

IV. DISTRIBUTED ESTIMATION OF GRAPH PARAMETERS
IN OPEN MULTI-AGENT SYSTEMS

In this section, we present and characterize a distributed
algorithm enabling the dynamic tracking of diameter and
radius (DR) of time-varying open networks (ON) together
with nodes’ eccentricities and network size (ES), which is
called DR-ON-ES and its detailed implementation is given
in Algorithm 1 (on the next page), with its core based on the
OSTDMC Protocol introduced in the previous Section III.

Our methodology extends and improves the state-of-the-
art [9], [19], [54] by dealing with networks where the num-
ber of agents may change (open networks) as well as the
pattern of interactions among them (time-varying networks).
The following subsections then explain in detail the strategy
employed by DR-ON-ES to compute the size of the network
(Section IV-A), the nodes’ eccentricities (Section IV-B), and
the network’s diameter and radius (Section IV-C), and provide
a formal characterization of the mean expected value and mean
squared error.

The strategy employed by DR-ON-ES for estimating the
size of the network consists in letting each node i ∈ Vk

in the network pick L ∈ N random numbers siℓk with
uniform distribution in [0, 1], estimate in a distributed way the
maximum among them by means of the OSTDMC Protocol
(on the variables xiℓ

k ), and then inferring an estimation ñi
k of

the number of agents nk by maximum likelihood expectation.
On the other hand, the strategy employed by DR-ON-ES for
estimating the nodes’ eccentricities and the network diameter
and radius exploits the specific TPI of the OSTDMC Protocol.
In particular, the TPI is such that each component i is equal
to the highest i⋆ among all numbers diminished by a constant
proportional to the distance between i and i⋆ in the communi-
cation graph (see eq. (25) in the proof of Theorem 2 given in
the Appendix). Thus, by executing two parallel instances of the
OSTDMC Protocol (on the variables xiℓ

k , yiℓk ) and computing
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the difference between the two estimations (denoted by σiℓ
k ),

the agents obtain an estimate ε̃ik of their own eccentricity
εik. By running another instance of the OSTDMC Protocol
(on the variables ziℓk ) with input signals σiℓ, the agents are
able to track the maximum among all these distances for each
generated number: when the highest number is attained by a
node in the periphery of the network, it is a good estimate
of the 1diameter; when the highest number is attained by a
node in the core of the network, it is a good estimate of the
radius. By taking the maximum and minimum among all these
distances, the agents obtain estimates δ̃ik, ρ̃ik of the diameter
δk and radius ρk, respectively.

We prove next the open stability of the TPI of an OMAS
executing DR-ON-ES (Theorem 3) and summarize the state
variables in play along for each quantity in Table I, along
with the corresponding estimations.

Theorem 3. Consider an OMAS executing DR-ON-ES and
assume that:

a) The graph Gk is undirected and connected for all k ∈ N;
b) The diameter δk is bounded by a constant δ̄ for all k ∈ N;
c) The OMAS has dwell time Υ ≥ δ̄.

If the protocol is designed with 1 > θ ≥ βy > βx > βz > 0,
then the TPI of the OMAS is globally asymptotic open stable
with β = βy , Π = βyθ, and Ξ = 1.

Proof: DR-ON-ES consists of multiple instances of
the OSTDMC Protocol. Since sufficient conditions for global
asymptotic open stability of the TPI of an OMAS executing
the OSTDMC Protocol have been provided in Theorem 2,
the TPI of an OMAS executing DR-ON-ES is globally
asymptotic open stable if the same set of conditions hold:
conditions (a)-(b)-(c) of Theorem 2 hold by assumption;
condition (d) of Theorem 2 holds with Π = βyθ because
the reference signals are such that

∣∣siℓk − siℓk−1

∣∣ = 0 and∣∣σiℓ
k − σiℓ

k−1

∣∣ ≤ (βy − βx)θ ≤ βyθ for all k ∈ N; condition
(e) holds with Ξ = 1 because the reference signals satisfy
siℓk , σ

iℓ
k ∈ [0, 1], ∀k ∈ N.

A. Counting the number of agents
The methodology for counting the number of agents consists

in three steps:
1) (Generation) Arriving nodes i ∈ Ak generate

L ∈ N \ {0} independent random numbers and initialize
their states xiℓ

k ∈ R3 with ℓ ∈ [1, L] as in eq. (10);
2) (Estimation) Remaining nodes i ∈ Rk execute

the OSTDMC Protocol over the variables xiℓ
k , ob-

taining estimations xiℓ,1
k of the maximum values

s̄ℓk = max{s1ℓk , s2ℓk , . . .}
3) (Inference) All nodes i ∈ Vk infer an estimation ñi

k of the
network’s size by maximum likelihood estimation from
their estimations [xi1,1

k , . . . , xiL,1
k ] as in eq. (12).

The following Theorem 4 shows that for large values of L
the mean expected value approaches the real size nk, while
the mean squared error decays with the inverse of L.

Theorem 4. Consider an OMAS executing DR-ON-ES un-
der the assumptions of Theorem 2, and let ˆ̃ni

k be the size

Algorithm 1 (DR-ON-ES): Distributed tracking of Diameter
and Radius (DR) of Open Networks (ON) with nodes’
Eccentricities and network Size (ES)

Input: Parameters 1 > θ ≥ βy > βx > βz > 0, L ∈ N
At each time step k = 0, 1, 2, . . . all nodes i ∈ V do

if i ∈ Ak then for ℓ = 1, . . . , L node i does
*** Step 1 - Generation ***
Select numbers siℓk ∈ [0, 1] uniformly at random and

initialize its states xiℓ
k , y

iℓ
k , z

iℓ
k ∈ R3 to

xiℓ
k = [1, θ, βx]

⊤, yiℓk = [1, θ, βy]
⊤,

ziℓk = [0, γθ, βz]
⊤, with γ := (βy − βx).

(10)

if i ∈ Rk then for ℓ = 1, . . . , L node i does
*** Step 2 - Estimation ***
Receive xjℓ

k−1, yjℓk−1, zjℓk−1 from j ∈ Ni,k−1

Run two instances of the OSTDMC Protocol on siℓk with
different design parameters βy > βx

xiℓ
k = OSTDMCθ,βx

(siℓk , x
jℓ
k−1 : j ∈ Ni,k−1),

yiℓk = OSTDMCθ,βy
(siℓk , y

jℓ
k−1 : j ∈ Ni,k−1).

Compute the difference between the estimations,
bounding its variation by γθ and saturating it in [0, 1]

σiℓ
k =min{1,σiℓ

k−1+γθ,max{0,σiℓ
k−1−γθ,xiℓ,1k −yiℓ,1k }}. (11)

Run another instance of the OSTDMC Protocol on σiℓ
k

ziℓk = OSTDMCγθ,βz
(σiℓ

k , z
jℓ
k−1 : j ∈ Ni,k−1).

Transmit xjℓ
k , yjℓk , zjℓk to j ∈ Ni,k

*** Step 3 - Inference ***
Compute estimations ε̃ik of its own eccentricty, ñi

k of the
network size, δ̃ik, ρ̃ik of the network diameter and radius

ñi
k =

−L
∑L

ℓ=1 ln(x
iℓ,1
k )

, δ̃ik = max
ℓ=1,...,L

ziℓ,1k

γ
,

ε̃ik = max
ℓ=1,··· ,L

σiℓ
k

γ
, ρ̃ik = min

ℓ=1,...,L

ziℓ,1k

γ
.

(12)

estimation of the i-th agent at the current point of interest of
the TPI as in Table I. Then, as βx → 0, it holds

E
[
ˆ̃ni
k

]
=

Lnk

L− 1
, E

[
(ˆ̃ni

k − nk)
2
]
= n2

k

L+ 2

(L− 1)(L− 2)
,

where nk is the size of the network at time k.

Proof: The likelihood function measures the fitness of a
statistical model to a data sample (in our case, the maximum
values s̄ℓk+1), for given values of the unknown parameters (in
our case the dimension of the network nk). By noticing that
the maximum values s̄ℓk+1 are the nk-th order statistics of the
sets sℓk+1 = {s1ℓk+1, s

2ℓ
k+1, . . .} for any ℓ = 1, . . . , L, and by

noticing that they are independent and identically distributed
random variables forming the sample {s̄1k+1, . . . , s̄

L
k+1}, one

can compute the likelihood function, cfr. [9, Section V],

L(nk|sℓk+1) = nL
k

L∏

ℓ=1

(s̄ℓk+1)
nk−1.
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Global quantity of interest Quantities of interest at the i-th node

State variables TPI Estimation Value at the TPI

Number of agents nk xiℓ
k x̂iℓ

k ñi
k = −L/

L∑

ℓ=1

ln(xiℓ,1
k ) ˆ̃ni

k = −L/

L∑

ℓ=1

ln(x̂iℓ,1
k )

Eccentricity εik xiℓ
k , y

iℓ
k x̂iℓ

k , ŷiℓk ε̃ik = max
ℓ=1,··· ,L

xiℓ,1
k − yiℓ,1k

γ
ˆ̃εk = max

ℓ=1,··· ,L
x̂iℓ,1
k − ŷiℓ,1k

γ

Network diameter δk ziℓk ẑiℓk δ̃ik = max
ℓ=1,...,L

ziℓ,1k

γ
ˆ̃
δik = max

ℓ=1,...,L

ziℓ,1k

γ

Network raius ρk ziℓk ẑiℓk ρ̃ik = min
ℓ=1,...,L

ziℓ,1k

γ
ˆ̃ρik = min

ℓ=1,...,L

ziℓ,1k

γ

TABLE I
STATE VARIABLES, TPI, AND OUTPUT ESTIMATIONS OF AN OMAS EXECUTING DR-ON-ES.

The value ñk maximizing the likelihood function is the max-
imum likelihood estimator of parameter nk, given by

ñk = −L/
∑L

ℓ=1 ln(s̄
ℓ
k+1). (13)

However, the i-th agent does not have the exact knowledge
of the values s̄ℓk+1, but it only knows its own estimates xiℓ,1

k ,
obtained by executing the OSTDMC Protocol. Thus, the best
it can do is to use the values xiℓ,1

k instead of s̄ℓk+1, yielding

ñi
k = −L/

∑L
ℓ=1 ln(x

iℓ,1
k ), ∀i ∈ Vk, (14)

which is the output of DR-ON-ES. By Theorem 3, and
more precisely by eq. (19) in its proof, the TPI satisfies
x̂iℓ,1
k ∈ [s̄ℓk+1 − δ̄βx, s̄

ℓ
k+1] which, in the limit of βx → 0,

yields x̂iℓ,1
k = s̄ℓk+1. This means that, the estimation at the

current point of interest of the TPI is given by

ˆ̃ni
k := −L/

∑L
ℓ=1 ln(x̂

iℓ,1
k ) = −L/

∑L
ℓ=1 ln(s̄

ℓ
k)

The statement of the theorem follows by noticing that such
estimations ñi

k are inverse-Gamma random variables with
shape L and rate Lnk (cfr. [9, Proof of Theorem 3]).

B. Computing the node eccentricities
The methodology for computing the node eccentricities

consists in three steps:
1) (Generation) Arriving nodes i ∈ Ak generate

L ∈ N \ {0} independent random numbers and initialize
their states xiℓ

k+1, y
iℓ
k+1 ∈ R3 with ℓ ∈ [1, L] as in

eqs. (10)-(10);
2) (Estimation) Remaining nodes i ∈ Rk execute two in-

stances of OSTDMC Protocols over the variables xiℓ
k , y

iℓ
k ,

with different tuning parameter βy > βx > 0, obtaining
two different estimations xiℓ,1

k and yiℓ,1k of the maximum
values s̄ℓk+1 = max{s1ℓk+1, s

2ℓ
k+1, . . .}. Exploiting the

different TPIs due to βy ̸= βx, the nodes can get an
estimate σiℓ

k as in eq. (11) of their distance to the node
ℓ⋆ that generated the highest number siℓ

⋆

k+1 = s̄ℓk+1;
3) (Inference) All nodes i ∈ Vk infer an estimation ε̃ik+1

of their eccentricity by taking the maximum among their
distance to other node [σi1

k+1, . . . , σ
iL
k+1] as in eq. (12).

The following Theorem 5 shows that for large values of L
the mean approaches the real eccentricity εik, while the mean
squared error decays exponentially with L.

Theorem 5. Consider an OMAS executing DR-ON-ES un-
der under the assumptions of Theorem 2 and let ˆ̃εik be the
eccentricity estimation of the i-th agent at the current point of
interest of the TPI as in Table I. Then, it holds

E
[
ˆ̃εik

]
= εik −∑εik

ε=1 gk(ε, ε
i
k, L),

E
[
(ˆ̃εik − εik)

2
]
=

∑εik
ε=1(2ε

i
k − 2ε+ 1)gk(ε, ε

i
k, L),

where εik is the eccentricity of agent i at time k and the
function g is defined by

gk(ε,ε
i
k,L)=

(
1−n−1

k

∑εik
h=ε

∣∣∣N h
i,k

∣∣∣
)L

. (15)

Proof: Assuming no quantization of the real numbers,
for each ℓ = 1, . . . , L, the maximum s̄ℓk+1 among each
set of numbers sℓk+1 = {s1ℓk+1, s

2ℓ
k+1, . . .} is unique with

probability one by the continuity of the distribution. Let
ℓ∗ be the node with the highest number siℓ

⋆

k+1 = s̄ℓk+1,
i.e., ℓ⋆ = argmaxj∈Vk+1

sjℓk+1. By Theorem 3, and more
precisely by eq. (25) in its proof, the TPI is such that
x̂iℓ,1
k = s̄ℓ

⋆

k+1 − βx · disti,ℓ
⋆

k , and ŷiℓ,1k = s̄ℓ
⋆

k+1 − βy · disti,ℓ
⋆

k .
Consequently, each agent can infer its distance to ℓ⋆ by
computing the difference x̂iℓ,1

k − ŷiℓ,1k and dividing it by
(βy − βx). Therefore, agent i can infer an estimate of its
eccentricity by considering the maximum distance to the nodes
who selected the highest number, i.e.,

ε̃ik = max
ℓ=1,··· ,L

σiℓ
k

βy − βx
= max

ℓ=1,··· ,L
xiℓ,1
k − yiℓ,1k

βy − βx
,

which is the output of DR-ON-ES, and at the point of interest
of the TPI is given by

ˆ̃εik = maxℓ=1,··· ,L disti,ℓ
⋆

k , (16)

We first compute the probability that the estimation ˆ̃εik is
greater than or equal to ε ∈ {1, . . . , εik}:

.P[ˆ̃εik≥ε]
(i)
=P

[
∃ℓ∈{1, . . . ,L} :disti,ℓ

⋆

k ≥ε
]
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(ii)
= 1−P

[
∀ℓ∈{1, . . . ,L} :disti,ℓ

⋆

k <ε
]

(iii)
= 1−

(
P
[
disti,ℓ

⋆

k <ε
])L (ii)

= 1−
(
1−P

[
disti,ℓ

⋆

k ≥ε
])L

(iv)
= 1−

(
1−n−1

k

∑εik
h=ε

∣∣N h
i

∣∣
)L (v)

= 1−gk(ε,ε
i
k,L), (17)

where (i) holds by eq. (16); (ii) hold by the complemen-
tary event; (iii) holds because all events

∣∣∣disti,ℓ
⋆

k

∣∣∣ < ε for
ℓ ∈ {1, . . . , L} are independent from each other and, in turn,
the joint probability equals the product of the single events’
probabilities); (iv) holds because the probability that ℓ⋆ is
such that disti,ℓ

⋆

k ≥ ε can be computed by taking the ratio
between number of favourite outcomes, which is the sum of
all nodes with distance to node i greater or equal than ε, given
by

∑εik
h=ε |N h

i,k|, and the total number of nodes |Vk|; (v) holds
by definition of the function g(ε, εik, L) as in eq. (15).

We can now derive the mean expected value as follows

E[ˆ̃εik]
(i)
=
∑εik

ε=1εP[ˆ̃εik=ε]=
∑εik

ε=1ε
(
P[ˆ̃εik≥ε]−P[ˆ̃εik≥ε+1]

)

=
∑εik

ε=1εP[ˆ̃εik≥ε]−∑εik
ε=2(ε−1)P[ˆ̃εik≥ε]=

(
εP[ˆ̃εik≥ε]

)
ε=1

+
∑εik

ε=2P[ˆ̃εik≥ε]=P[ˆ̃εik≥1]+
∑εik

ε=2P[ˆ̃εik≥ε]=
∑εik

ε=1P[ˆ̃εik≥ε]

(ii)
=

∑εik
ε=1

(
1−g(ε,εik,L)

)
=εik−

∑εik
ε=1g(ε,ε

i
k,L), (18)

where (i) holds because the mean expected value is cal-
culated by multiplying each of the possible outcomes by
the probability each outcome will occur and then sum-
ming all of those values; (ii) holds by eq. (17). By
similar steps one can also compute the second moment,
E[(ˆ̃εik)2] = εik

2 −∑εik
ε=1(2ε− 1)g(ε, εik, L), and, in turn, the

mean squared error:

E
[
(ˆ̃εik−εik)

2
]
=

VAR[ˆ̃εik]︷ ︸︸ ︷(
E[(ˆ̃εik)2]−E2[ˆ̃εik]

)
+

BIAS2[ˆ̃εik]︷ ︸︸ ︷(
E[ˆ̃εik]−εik

)2

=E[(ˆ̃εik)2]−2εikE[ˆ̃εik]+εik
2
=−∑εik

ε=1(2ε−1)g(ε,εik,L)

−2εik
2
+2εik

∑εik
ε=1g(ε,ε

i
k,L)=

∑εik
ε=1(2ε

i
k−2ε+1)g(ε,εik,L),

thus completing the proof.

C. Computing the network’s diameter and radius
The methodology for computing the network’s diameter and

radius consists in three steps:
1) (Generation) Arriving nodes i ∈ Ak generate

L ∈ N \ {0} independent random numbers and initialize
their states ziℓk+1 ∈ R3 with ℓ ∈ [1, L] as in eq. (10);

2) (Estimation) Remaining nodes i ∈ Rk first estimate
their distance to other nodes σiℓ

k as in eq. (11), then
execute the OSTDMC Protocol over the variables ziℓk ,
obtaining estimations ziℓ,1k of the maximum estimated
distance σ̄ℓ

k = max{σ1ℓ
k , σ2ℓ

k , . . .};
3) (Inference) All nodes i ∈ Vk infer estimations δ̃ik, ρ̃ik of

the network’s diameter and radius, respectively, by taking
the maximum and the minimum among their estimations
[zi1,1k+1, . . . , z

iL,1
k ] as in eq. (12);

The following Theorem 6 shows that for large values of L the
mean approaches the real diameter δik or radius ρik, while the

mean squared error decays exponentially with L.

Theorem 6. Consider an OMAS executing DR-ON-ES un-
der under the assumptions of Theorem 2 and let ˆ̃δik, ˆ̃ρik be the
diameter/radius estimations of the i-th agent at the current
point of interest of the TPI as in Table I. Then, it holds

E
[
ˆ̃
δik

]
= δk −

∑δk
δ=ρk+1 gk(δ, δk, L),

E
[
ˆ̃ρik

]
= ρk −

∑δk−1
ρ=ρk

gk(ρ, ρk, L),

E
[
(
ˆ̃
δik − δk)

2
]
=

∑δk
δ=ρk+1(2δk − 2δ + 1)gk(δ, δkL),

E
[
(ˆ̃ρik − ρk)

2
]
=

∑δk−1
ρ=ρk

(2ρk − 2ρ+ 1)gk(ρ, ρkL)

where δk, ρk are the diameter and radius of the network at
time k, the function gk : N3 → R≥0 is defined in eq. (15), and
L ∈ N is the total number of randomly generated numbers.

Proof: The proof mimick that of Theorem 5 and is
omitted for the sake of space.

D. Discussion about the local memory requirements and
the worst-case estimation errors

To execute DR-ON-ES, each node i ∈ Vk in the network
at time k needs to store and update state variables xiℓ

k , y
iℓ
k ∈

R3, ziℓk ∈ R3 and also needs to receive and store the first
two components of its neighbors’ states. Consequently, each
agent needs to allocate 9L+6|Ni,k−1|L scalar values, i.e., the
memory requirement scales as O(|Ni,k−1|L).

A practical way to compute the maximum memory re-
quirement for each agent in the network requires to know an
upper bound on the number of neighbors (which we denote by
nneigh) and then choose the parameter L based on the desired
estimation precision as explained next. Let nk be the true
number of agents in the network and ˆ̃ni

k be the estimate at the
TPI for the i-th agent. By the concavity of the square root and
Jensen’s inequality, the absolute error on the size estimation
can be upper bounded by

E
[
|ˆ̃ni

k − nk|
]
≤

√
E
[
(ˆ̃ni

k − nk)2
]
.

Then, using Theorem 4, the percentage error satisfies

ε% =
E
[
|ˆ̃ni

k − nk|
]

nk
≤

√
L+ 2

(L− 1)(L− 2)
.

For instance, to guarantee a precision of ε% = 10%, one
should select L ≈ 100. Assuming that the number of neighbors
is at most nneigh = 10, each agent must store approximately
9L + 6nneighL ≈ 7, 000 scalars. With each scalar stored
in double-precision (8 bytes per scalar), the total memory
requirement is less about 50 KB. Even for nneigh = 100, the
memory requirement remains below 0.5 MB.

On the other hand, a conservative upper bound on the
expected absolute error on the eccentricity, diameter, and
radius estimations is discussed next. In so doing, since the
estimation of the quantities is always a lower estimation and
never an over estimation by construction, we can exploit the
expected value of these quantities given in Theorems 5-6,
which all have the same following structure:
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E
[∣∣∣ˆ̃qi−q

∣∣∣]=E
[
q−ˆ̃qi

]
=

q∑
j=p

gk(j,q,L)=n−L
k

q∑
j=p

(
nk−

q∑
h=j

∣∣∣Nh
i,k

∣∣∣)L
,

where q ∈ {εik, δk, ρk} is the generic quantity of interest
and p ∈ N is an integer. A good upper bound that works well
for large small ranges [p, q], can be obtained by noticing that∑q

h=j |N h
i,k| ≥ 1, yielding

q∑

j=p

gk(j, q, L) ≤ (p− q + 1)

(
nk − 1

nk

)L

.

Instead, an upper bound that works well for large ranges [p, q],
can be obtained by noticing that

∑b
h=j

∣∣∣N h
i,k

∣∣∣ ≥ q − j + 1,
which allows to write the summation as a partial Faulhaber’s
formula. Indeed, denoting κ = nk − q + j − 1 ∈ {m,N} with
N = nk − 1 and m = nk − (q − p) + 1, yields

q∑

j=p

gk(j, q, L) ≤ n−L
k

q∑

j=p

(
nk − q + j − 1

)L

=:

N∑

κ=m

κL.

We find an upper bound by integral approximation:
N∑

κ=m

κL ≤
∫ N+1

m

xLdx =

[
xL+1

L+ 1

]N+1

m

≤ (N + 1)L+1

L+ 1
.

Thus, substituting yields
q∑

j=p

gk(j, q, L) ≤
nk

(L+ 1)
.

Therefore, a good general upper bound to the expected abso-
lute error is obtained by taking the minimum of the two above
upper bounds, namely:

E
[∣∣∣ˆ̃εik − εik

∣∣∣
]
≤ min

{
εik

(
nk − 1

nk

)L

,
nk

(L+ 1)

}

E
[∣∣∣ˆ̃δk − δk

∣∣∣
]
≤ min

{
(δk − ρk)

(
nk − 1

nk

)L

,
nk

L+ 1

}
,

E
[∣∣∣ ˆ̃ρk − ρk

∣∣∣
]
≤ min

{
(δk − ρk)

(
nk − 1

nk

)L

,
nk

L+ 1

}
.

One can use the second upper bound, which does not depend
on the quantity of interest, to determine the growth rate of
L with respect to the number of nk when one wants to
achieve a maximum expected absolute error of eABS. Since
these estimations are always estimation from below, due to
round up operation, to achieve a expected maximum absolute
error of eABS ∈ {1, 2, · · · } one may just require that:

nk

(L+ 1)
< eABS + 1 ⇒ L >

n

eABS + 1
− 1.

Intuitively, to achieve a null maximum expected maximum
absolute error, the nodes must select L as large as the network
size, as it is usually required in flooding techniques. By
allowing for larger errors, the value of L may be decreased
linearly by a factor given by eABS. Another choice, could be
that of having an absolute error that is proportional to the

network size, namely

eABS = α · n with α ∈ (0, 1) ⇒ L >
1

α
.

In practice, the error is much less than these upper bounds, as
they are computed for arbitrary graphs, including degenerate
cases were these bounds are strict. In particular, such a
degenerate graph is the line graph since difference between the
radius and the diameter is maximized, being δk − ρk ≈ nk/2
is maximized, as well as the maximum eccentricity which is
exactly maxi ε

i
k = nk − 1.

V. NUMERICAL SIMULATIONS

We now discuss a numerical simulation of an open network
executing DR-ON-ES, which initially has n0 = 500 nodes.
At any time k ≥ 0, there is a probability pjoink ∈ [0, 1]
that one node joins the network, establishing connections with
any of the nodes in the network, and there is a probability
pleavek ∈ [0, 1] that one node leaves the network. We model
these events in a way that the network remains connected and
that there exists a dwell time Υ between any two of these
events. In particular, we let:

[pjoink , pleavek ] =





[0.9, 0.2] if k ≤ 2 · 104
[0.2, 0.9] if k ∈ (2 · 104, 4 · 104]
[0.5, 0.5] if k > 4 · 104

.

Consequently, for k ≤ 2 · 104 the number the number of
agent increases, for k ∈ (2 · 104, 4 · 104] decreases, then for
k > 3 · 104 oscillates around the average. The initial graph
is randomly generate with diameter δ0 ≤ 10, and we let such
value work as an upper bound on the diameter at any time,
i.e., δk ≤ δ̄ := 10 for all k ≥ 0. In turn, we consider a dwell
time of Υ = 100 ≥ δ̄. Also, we force the 1-st node to remain
in the network in order to be able to show the estimation of its
eccentricity over the whole simulation. The other parameters
are designed as follows:

θ = 10−1, βy = 10−12, βx = 10−14, βz = 10−16, L = 100.

Figure 1 shows the evolution of the number of agents in
the network (red solid line) – experiencing a change of about
30% – and the average estimation across all agents (blue
dotted line). Moreover, to better appreciate the trend of the
overall estimation, it is also shown the moving average of this
estimation over a period of time equal to the dwell time of the
network (blue dashed line). Figure 1 reveals that DR-ON-ES
enables the agents to get a reasonable estimate of the network’s
size by only exploiting local communications and no global
information. Due to Theorem 4 and the discussion in Section
IV-D, the percentage expected absolute error is bounded by√

L+2
(L−1)(L−2) ≤ 10%, as one can verify in Figure 1. Never-

theless, the agents are able to detect the trend of the changes in
the network since the execution of DR-ON-ES make the agents
aware of increments or decrements of the network size.

According to Theorems 1-3, the TPI of an OMAS is glob-
ally asymptotic open stable during the execution of DR-ON-ES
and its stability radius is given by R = 3.1. Figure 2 corrobo-
rates the theoretical findings since it shows that the maximum
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distance from the TPI across all states ℓ = 1, . . . , L does not
exceeds R during the whole simulation. Moreover, the fact
that the moving average of such distance is exactly zero helps
noticing that after every change in the network composition
the network converges to the new point of interest. We remark
that this does not imply that the size estimation is exact as the
estimation error depends on the statistic approach employed.

Figures 3-4-5 show instead the estimation for the eccen-
tricity of the 1-st node – who has been forced to stay within
the network during the whole estimation – and the estimations
for the diameter and radius. One can appreciate that in these
cases the estimation errors are much lesser if compared to
the size estimation error, being most of the time null and not
greater than one. This is in line with Theorems 4-5-6 and
the discussion in Section IV-D. Indeed, the expected absolute
error is always much lesser than the theoretical upper bound

min

{
(δk − ρk)

(
nk−1
nk

)L

, nk

L+1

}
≤ 4, as the mean squared

error of the size estimation decays with the inverse of L
while that of the eccentricities, diameter, and radius decays
exponentially with L.

VI. CONCLUSIONS

This manuscript sets a theoretical framework to analyze sta-
bility in open systems, namely systems whose state dimension
changes over time. A main novelty of this framework is that
of exploiting the non-Euclidean distance based on the infinity
norm, which is most suitable for open systems as it does not
depend on the specific size of the state vectors. Sufficient
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Fig. 2. Maximum distance between the network states
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k , · · · , xnkℓ
k ] and the TPI x̂ℓ

k = [x̂1ℓ
k , · · · , x̂nkℓ

k ] across
all states ℓ = 1, . . . , L during the execution of DR-ON-ES.

conditions for stability are provided for paracontractive and
slowly expansive system w.r.t. the infinity norm. Within this
framework, it proposes, characterize, and simulate a distributed
algorithm for multi-agent systems to simultaneously track the
number of agents within the network, their eccentricities, and
also the diameter and radius of the network. To achieve this
goal, a novel protocol to solve the dynamic max-consensus in
open networks.
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APPENDIX - PROOF OF THEOREM 2
The proof requires some intermediate Lemmas, which are

stated next and whose proof is given in subsequent sections.

Lemma 1. Consider an OMAS executing the
OSTDMC Protocol under the assumptions of Theorem 2.
Then, the OMAS has a TPI {x̂k : k ∈ N} where
x̂i
k = [ξ̂ik, µ

i
k, α

i
k]

⊤ ∈ R3 is such that

ξ̂ik := x̂i,1
k ∈ [s̄k+1 − δ̄β, s̄k+1],

µ̂i
k := x̂i,2

k ∈ [β, θ +Π],

α̂i
k := x̂i,3

k = β.

∀i ∈ Vk (19)

Lemma 2. Consider an OMAS executing the
OSTDMC Protocol under the assumptions of Theorem 2. If
θ ≥ β > 0, then the OMAS is Λ-slowly expansive w.r.t. ||·||∞
where

Λ = θ +Π+ δ̄β. (20)

Lemma 3. Consider an OMAS executing the
OSTDMC Protocol under the assumptions of Theorem 2. If
θ ≥ β > 0, then the OMAS is (Γ, T )-paracontractive w.r.t.
||·||∞ where

T = δ̄, Γ = max{2δ̄Π+ δ̄θ, (δ̄ + 1)(θ +Π)}, (21)

and where the contraction factor γ for Υ ≥ T is

γ = max

{
0,

x̄1
0 − s̄1 − β − (Υ− δ̄)(θ +Π)

||x1
0 − x̂1

0||∞

}
. (22)

We carry out the proof of Theorem 2 by showing that
assumptions and conditions of Theorem 1 hold:

a) the OMAS is (Γ, T )-paracontractive w.r.t. ||·||∞ and with
factor γ, where Γ and T are as in eq. (21) and γ is as in
eq. (22), due to assumptions (a)-(b)-(d) and Lemma 3;

b) the OMAS is Λ-slowly expansive with Λ as in eq. (20)
due to assumptions (a)-(b)-(d) and Lemma 2;

c) the OMAS admits a TPI of B-bounded variation with
B = Π due to assumptions (a)-(b)-(d) and Lemma 1;

d) the arrival process is H-bounded with H = Ξ due to
assumption (e).

e) the OMAS has ha dwell time Υ due to assumption (c);
Thus, Theorem 1 holds and the proof is complete.

A. Proof of Lemma 1
According to Definition 1, the TPI is the open sequence

{x̂k : k ∈ N} where x̂k = [ξ̂k, µ̂k, α̂k]
⊤ ∈ R3n is the unique

solution to x̂k = gk+1(x̂k), given component-wise by

ξ̂ik = max
j∈Ni,k

{
ξ̂jk − max

ℓ∈Ni,k

α̂ℓ
k, s

i
k+1

}

µ̂i
k = max

j∈Ni,k

{µ̂j
k, θ + (sik − sik+1)}

α̂i
k =





α̂i
k−1 if i ∈ Rk ∧ ξ̂ik > ξ̂ik−1,

µi
k if i ∈ Rk ∧ ξ̂ik < ξ̂ik−1,

β otherwise.

(23)

First, variable µ̂i
k ≥ β are initialized at β ≤ θ and can

increase up to θ plus the maximum among all state variations
sik−sik+1, which is upper bounded by Π due to assumption (d).
This proves that the component µ̂i

k is bounded as in eq. (19).
Secondly, since ξ̂ik ̸= ξ̂ik is an absurd, then α̂i

k = β. This
proves that the component α̂i

k is bounded as in eq. (19).
These two preliminary results further simplify the relation

of the TPI regarding the state variables ξik, as shown next

ξ̂ik = max
j∈Ni,k

{
ξ̂jk − β, sik+1

}
. (24)

Either one of the following case hold:
a) ξ̂ik = ξ̂jk − β > sik+1 for some j ∈ Ni,k \ {i}.
b) ξ̂ik = sik+1.

Let V1
k be the set of nodes with the maximum reference signal,

V1
k = {i ∈ Vk : sik+1 = s̄1k+1}, with s̄1k+1 := max

j∈Vk

sjk+1.

By induction, for ℓ ≥ 2 let the sets of nodes with the ℓ-th
maximum reference signal be

Vℓ
k={i∈Vk :s

i
k+1= s̄ℓk+1} with s̄ℓk+1 :=max

j∈Vk

{sjk+1<s̄ℓ−1
k+1}.

We now show by contradiction that case a) cannot hold for
agent i ∈ V1

k . Indeed, if a) holds for some j ∈ Ni,k,
then ξ̂jk − β > sik+1 = s̄1k+1 ≥ sjk+1 and, in turn, ξ̂jk ̸= sjk+1.
Consequently, case b) cannot hold for i = j and, by induction,
it cannot hold for all other agents. This leads to the absurd
that there cannot be an agent with maximum state, i.e., for all
i ∈ Vk there would be j ∈ Ni,k whose state is strictly greater
than that of i, namely ξ̂ik = ξ̂jk − β < ξ̂jk. Thus, case a) leads to
a contradiction and only case b) can hold for i ∈ V1

k , yielding

ξ̂ik = s̄1k+1 ∀i ∈ V1
k ,

proving the claim.
For the agents i ∈ V2

k with the 2-nd highest reference
signal, if b) holds then ξ̂ik = s̄2k+1. If a) holds instead, for
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j ∈ Ni,k we may have two cases: if j ∈ V1
k , by the previous

result for the agents with the highest reference signal, then
ξ̂ik = ξ̂jk − β = s̄1k+1 − β; if Ni,k\V1

k = ∅ instead, then j ̸∈ V1
k

and one must repeat the reasoning for i = j. This process
terminates when some agent in V1

k is found in a neighborhood,
which is guaranteed to occur since the graph is connected
and undirected according to assumption (a). The value of the
component ξ̂ik takes the maximum signal s̄1k+1 reduced by
dβ where d ∈ N corresponds to the number of edges in the
shortest path πi,p

k between node i and any of the nodes p ∈ V1
k :

ξ̂ik = max{s̄1k+1 − min
p∈V1

k

disti,pk β, s2k+1}, ∀i ∈ V2
k .

By induction, for a generic ℓ = 1, 2, · · · it holds

ξ̂ik = max
0<j<ℓ

{s̄jk+1 − min
p∈Vℓ−1

k

disti,pk β, sik+1}, i ∈ Vℓ
k. (25)

This proves that the OMAS executing the STDMC protocol
has a TPI, determined component-wise by eq. (25). Since the
maximum distance between two nodes at time k is equal to
the diameter δk of the network, which is bounded by δ̄ by
assumption (b), the components of the TPI as in eq. (25)
cannot be lesser than s̄k+1 − δ̄β, completing the proof.

B. Proof of Lemma 2

The OMAS is Λ-slowly expansive if there is Λ ≥ 0 such
that for any x ∈ Rm·nk it holds

||gk+1(x)− x̂k||∞ ≤ ||x− x̂k||∞ + Λ.

Recalling that x = [· · · , xi, · · · ] where each xi has three scalar
components denoted by xi = [ξi, µi, αi]⊤ let us use the use
the simpler notation xi

k+1 := gik+1(x) ∈ R3 and also

xi
k+1 =

[
ξik+1, µi

k+1, αi
k+1

]⊤

whose specific expressions for the OSTDMC Protocol are

ξik+1 = max
j∈Ni,k

{
ξj − avg

ℓ∈Ni,k

αℓ, sik+1

}
,

µi
k+1 = max

j∈Ni,k

{µj , θ + (sik − sik+1)},

αi
k+1 =




αi if ξik+1 > ξi,

µi
k+1 if ξik+1 < ξi,

β otherwise.
By assumption (d), the maximum variation of the reference

signal is Π and, in turn, both µi
k+1 and αi

k+1 are constrained
within the interval [β, θ+Π], while ξik+1 may take any value.
Moreover, by Lemma 1, the TPI is such that µ̂i

k ∈ [β, θ +Π]
and α̂i

k = β. Therefore, Λ1 = θ+Π is an upper bound to the
distances from the TPI, yielding

∣∣µi
k+1 − µ̂i

k

∣∣ ≤ Λ1 ≤ ||µ− µ̂k||∞ + Λ1,∣∣αi
k+1 − α̂i

k

∣∣ ≤ Λ1 ≤ ||α− α̂k||∞ + Λ1.
(26)

Similarly, we now prove that there is Λ2 ≥ 0 such that
∣∣∣ξik+1 − ξ̂ik

∣∣∣ ≤
∣∣∣
∣∣∣y − ξ̂k

∣∣∣
∣∣∣
∞

+ Λ2. (27)

By the local update rule of the OSTDMC Protocol, it holds
that ξik+1 ∈

[
ξi − θ −Π,max{ξ̄ − β, s̄k+1}

]
. Moreover, by

and assumption (b) and the constructing proof of Lemma 1,
more precisely by eq. (25), we know that

ξ̂ik ∈
[
s̄k+1 − δ̄β, s̄k+1

]
, (28)

This yields the following upper bound:
∣∣∣ξik+1−ξ̂ik

∣∣∣=max{ξik+1−ξ̂ik,ξ̂
i
k−ξik+1}

≤max

{
max{ξ̄−β,s̄k+1}−s̄k+1+δ̄β,

s̄k+1−ξi+θ+Π

}

≤max

{
δ̄β, ξ̄−s̄k+1+(δ̄−1)β,

s̄k+1−ξi+θ+Π

}

(i)
=max

{
A:=δ̄β, B :=ξ̄−ξ̂jk+δ̄β, ∀j∈Vk

C :=ξ̂jk−ξi+θ+Π+δ̄β, ∀j∈Vk

}
,

where (i) holds by eq. (28) yielding −s̄k+1 ≤ −ξ̂jk and
s̄k+1 ≤ ξ̂jk + δ̄β, ∀j ∈ Vk. The three possible outcomes are:
A ≥ max{B,C} is the largest - It directly holds that

∣∣∣ξik+1 − ξ̂ik

∣∣∣ ≤ δ̄β ≤
∣∣∣
∣∣∣y − ξ̂k

∣∣∣
∣∣∣
∞

+ δ̄β︸︷︷︸
:=Λ′

2

. (29)

B ≥ max{A,C} is the largest - Node i has a neighbor
j⋆ ∈ Ni,k such that ξj

⋆

= ξ̄, thus selecting j = j⋆ an upper
bound can be found as follows

∣∣∣ξik+1 − ξ̂ik

∣∣∣ ≤ ξj
⋆ − ξ̂j

⋆

k + δ̄β
(i)
=

∣∣∣ξj⋆ − ξ̂j
⋆

k + δ̄β
∣∣∣ (30)

(ii)

≤
∣∣∣ξj⋆ − ξ̂j

⋆

k

∣∣∣+ δ̄β ≤
∣∣∣
∣∣∣y − ξ̂k

∣∣∣
∣∣∣
∞

+ δ̄β︸︷︷︸
:=Λ′

2

,

where (i) holds by B ≥ A ≥ 0 and (ii) by triangle inequality.
C ≥ max{A,B} is the largest - Node i decreases

its state and thus it holds that ξi ≥ ξj
⋆

for any j⋆ ∈ Ni,k.
Consequently, selecting j = j⋆ an upper bound can be found
as follows∣∣∣ξik+1− ξ̂ik

∣∣∣≤ ξ̂j
⋆

k −ξi+θ+Π+ δ̄β

(i)
=
∣∣∣ξ̂j

⋆

k −ξi+θ+Π+ δ̄β
∣∣∣
(ii)

≤
∣∣∣ξ̂j

⋆

k −ξj
⋆

+θ+Π+ δ̄β
∣∣∣

(iii)

≤
∣∣∣ξ̂j

⋆

k −ξj
⋆
∣∣∣+θ+Π+ δ̄β≤

∣∣∣
∣∣∣y− ξ̂k

∣∣∣
∣∣∣
∞
+θ+Π+ δ̄β︸ ︷︷ ︸

:=Λ′′
2

, (31)

where (i) holds by assumption C ≥ A ≥ 0; (ii) holds since
ξi ≥ ξj

⋆

for any j⋆ ∈ Ni,k as previously noted; (iii) holds
by triangle inequality.

[Conclusion] We proved that eq. (27) holds with Λ2 =
max{Λ′

2,Λ
′′
2} = Λ′′

2 = θ+Π+δ̄β, according to eqs. (29)-(31).
The proof is completed with Λ = max{Λ1,Λ2} = Λ2,

C. Proof of Lemma 3
Let k be a generic time such that Vk = · · · = Vk+T−1, then,

according to Definition 2, the OMAS is (Γ, T )-paracontractive
if for all x ∈ Rm·nk it holds

∣∣∣∣g[k,T ](x)− x̂k

∣∣∣∣
∞ ≤ max{γ||x− x̂k||∞,Γ}, (32)

where g[k,T ] = (gk+T ◦ · · · ◦ gk+1) and x̂k is the TPI of
the OMAS. Since x = [· · · , xi, · · · ] where each xi has three
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scalar components denoted by xi = [ξi, µi, αi]⊤, let us denote
xi
k+T := gi[k,T ](x) ∈ R3 and

xi
k+T =

[
ξik+T , µi

k+T , αi
k+T

]⊤

By the constructing proof of Lemma 2, and precisely from
eq. (26), we know that taking Γ ≥ Λ1 := θ +Π, ensures that
eq. (32) holds for all components µi

k+T and αi
k+T , i.e.,

∣∣µi
k+T − µ̂i

k

∣∣ ≤ Λ1,
∣∣αi

k+T − α̂i
k

∣∣ ≤ Λ1, ∀i ∈ Vk. (33)

The rest of the proof is devoted to prove that eq. (32) holds
also for the components ξik+T .

[Part 1: ξ̄−β ≤ s̄k+1] According to the state update rule of
the OSTDMC Protocol, an agent m ∈ Vk with the maximum
reference signal at time k + 1 (there may be more than one),
i.e., smk+1 = s̄k+1, updates its state to the signal itself, indeed,

ξmk+1 = max
j∈Nm,k

{
ξj − avg

ℓ∈Ni,k

αℓ, smk+1

}
= s̄k+1,

because αℓ ∈ [β, θ+Π]. Moreover, all other agents update their
state to a value that is lesser than or equal to the maximum
reference signal, i.e.,

ξik+1 = max
j∈Ni,k

{
ξj − avg

ℓ∈Ni,k

αℓ, sik+1

}
≤ max

{
ξ̄ − β, sik+1

}

≤ max{s̄k+1, s
i
k+1} ≤ s̄k+1, ∀i ∈ Vk.

Since the input variations are upper bounded by a constant Π
due to assumption (d), and no agents join or leave the network
over the time interval [k, k + T ], then we conclude that

ξik+T ≤ s̄k+1 + (T − 1)Π, ∀i ∈ Vk. (34)

On the other hand, since ξmk+1 = s̄k+1 is the maximum among
all states at time k+1, then all neighbors of agent m at time
k + 2 update their state according to

ξik+2 = max
j∈Ni,k+1

{
ξjk+1 − avg

ℓ∈Ni,k

αℓ
k+1, s

i
k+2

}

≥ ξmk+1 − (θ +Π) = s̄k+1 − (θ +Π), ∀i ∈ Nm,k+1.

because αℓ
k+1 ∈ [β, θ + Π]. By induction, Since by (a) the

network remains connected and by (b) the diameter is upper
bounded by δ̄, then for T ≥ δ̄ + 1 all agents have updated
their state such that it is greater than or equal to s̄k+1 reduced
by a number of parameters (θ +Π) equal to T , yielding

ξik+T ≥ s̄k+1 − (T − 1)(θ +Π), ∀i ∈ Vk. (35)

Combining eqs. (34)-(35) yields

ξik+T ∈ [s̄k+1− (T −1)(θ+Π), s̄k+1+(T −1)Π], ∀i ∈ Vk.

According to Lemma 1, the TPI satisfies
ξ̂ik ∈ [s̄k+1 − δ̄β, s̄k+1] and, in turn,

∣∣∣ξik+T − ξ̂ik

∣∣∣≤max{ξ̄k+T − ξ̂
i

k
,
¯̂
ξik−ξ

k+T
}

≤max{(T −1)Π+ δ̄β,(T −1)(θ+Π)}
≤(T −1)(θ+Π):=Γ1, ∀i∈Vk. (36)

where v̄, v denote the maximum and the minimum of a
vector v∈Rn, respectively. In other words, taking Γ≥Γ1 :=
(T −1)(θ+2Π) ensures that eq. (32) holds for all components

ξik+T with i∈V .

[Part 2: ξ̄−β>s̄k+1] According to the state update rule
of the STDMC protocol, the maximum state among all agents
reduces at least by a factor β, indeed, for each agent i∈Vk it
holds that

ξik+1= max
j∈Ni,k

{
ξj− avg

ℓ∈Ni,k

αℓ,sik+1

}
≤max{ξ̄−β,s̄k+1}=ξ̄−β.

because αℓ∈ [β,θ+Π]. If ξ̄k+1−β≤ s̄k+2, then the proof fol-
lows from the Part 1 previously discussed. Thus, we consider
the case ξ̄k+1−β>s̄k+2, which yields

ξik+2= max
j∈Ni,k+1

{
ξjk+1− avg

ℓ∈Ni,k

αℓ
k+1,s

i
k+2

}

≤max{ξ̄k+1−β, s̄k+2}= ξ̄k+1−β≤ ξ̄−2β, ∀i∈Vk.

By induction, in order to not fall in the case considered in Part
1, we assume that

ξ̄t−β>s̄t+1, ∀t∈ [k+1,k+ δ̄]. (37)

Since by (a) the network remains connected and by (b) the
diameter is upper bounded by δ̄, then, by induction, it holds

ξ̄k+δ̄+1≤ ξ̄−(δ̄+1)β, ∀i∈Vk.

In this worst case scenario, after δ̄ steps all agents are de-
creased and, according to the update rule of the parameters αi

k,
they are all updated to their maximum value equal to θ+Π.
Thus, the worst case assumption in eq. (37) for T ≥ δ̄+1
becomes ξ̄k+T −(θ+Π)>s̄k+T+1, and, in turn,

ξik+T ≤ ξ̄−(δ̄+1)β−(T − δ̄−1)(θ+Π), ∀i∈Vk. (38)

We now focus on finding a lower bound to ξik+T+1. First, an
agent m with the maximum state at time k (there may be more
than one), i.e., ξmk = ξ̄k, updates its state according to

ξmk+1= max
j∈Nm,k

{
ξj− avg

ℓ∈Ni,k

αℓ,sik+1

}

≥max
{
ξm−(θ+Π),smk+1

}
≥max

{
ξ̄−(θ+Π), s̄k+1

}
,

because αℓ∈ [β,θ+Π]. Secondly, the neighbors of the agent
m update their state at time k+2 according to

ξik+2= max
j∈Ni,k

{
ξjk+1− avg

ℓ∈Ni,k

αℓ
k+1,s

i
k+2

}

≥max
{
ξmk+1−(θ+Π),sik+2

}

≥max
{
ξmk+1−(θ+Π),sik+1−Π

}

≥max
{
ξ̄−2(θ+Π), s̄k+1−(θ+Π),sik+1−Π

}

≥max
{
ξ̄−2(θ+Π), s̄k+1−Π

}
, ∀i∈Nm,k+1.

Since by (a) the network remains connected and by (b)
the diameter is upper bounded by δ̄, then, by induction, for
T ≥ δ̄+1 all agents have updated their state such that

ξik+T ≥max
{
ξ̄−T (θ+Π), s̄k+1−(T −1)Π

}
. (39)

When β<ξ̄− s̄k+1≤Γ2 with T ≥ δ̄+1, eqs. (38)-(39) yield
∣∣∣ξik+T − ξ̂ik

∣∣∣≤max{ξ̄k+T − ξ̂
i

k
,
¯̂
ξik−ξ

k+T
}

=max

{
ξ̄− s̄k+1−β−(T − δ̄−1)(θ+Π)
s̄k+1− ξ̄+T (θ+Π), (T −1)Π

}
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=max

{
Γ2−β−(T − δ̄−1)(θ+Π)
−β+T (θ+Π), (T −1)Π

}

≤T (θ+Π):=Γ2, ∀i∈Vk. (40)

It is thus clear that taking Γ≥Γ2 :=T (θ+Π) ensures that
eq. (32) holds for all components ξik+T with i∈V when
β<ξ̄k− s̄k+1≤Γ2≤Γ. Similarly, we consider the last case
when ξ̄− s̄k+1=Γ2+σ for σ>0, as follows

∣∣∣ξik+T − ξ̂ik

∣∣∣≤max{ξ̄k+T − ξ̂
i

k
,
¯̂
ξik−ξ

k+T
}

≤Γ2+σ−β−(T − δ̄−1)(θ+Π), ∀i∈Vk.

Since by construction
∣∣∣
∣∣∣y− ξ̂k

∣∣∣
∣∣∣
∞
≥ ξ̄k− s̄k+1≥Γ2+σ>0, the

above relation implies that the system admits a contraction
factor γk :∈(0,1) for T ≥ δ̄+1 satisfying

γk :=
(
ξ̄− s̄k+1−β−(T − δ̄−1)(θ+Π)

)
/
∣∣∣
∣∣∣y− ξ̂k

∣∣∣
∣∣∣
∞
. (41)

The worst contraction factor γ can be determined by finding
the maximum among all γk with k≥0. By construction, it
holds that γ=γ0≥γk.

[Conclusion] Combining the result of Part 1 and Part 2
in eqs. (33)-(36)-(40)-(41), one obtains that the OMAS is
(Γ,T )-paracontractive w.r.t. ||·||∞ and with contraction factor
γ=γ0, where the smallest value of T is T = δ̄+1, such that
the minimum minimum value of Γ given by

Γ=max{Λ1,Γ1,Γ2}=(δ̄+1)(θ+Π),

thus completing the proof.
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